Vladisav Nazaruk, Pavel Rusakov
Riga Technical University, Latvia

METHODSFOR ANALYZING PERFORMANCE OF
PROCESS SYNCHRONIZATION ALGORITHMS

Abstract

One of the main goals of using concurrent compusrtg speed up the computations. This is donerogtsir-
ing a program in threads in a way to have a pdigibif dynamic reallocation of processor time fher
threads when one thread is idle. However, the plesspeedup and the overall performance dependsaoy
factors, including synchronization algorithms uged program, a pattern of thread interaction, ttepa of wait-
ing for external events etc. Therefore, before siripa better process synchronization algorithnafepecific
situation, the performance of possible algorithmbe used should be analyzed. Methods for analyzich
performance for different situations are the obfgdtudy of the research.

Key words. process synchronization, algorithms, performance

Introduction

Concurrent computing nowadays has become sufflgi@ntiespread. Concurrent comput-
ing is defined as a form of computing which supgabat a computational unit (i. e., a com-
puter program) is divided into several computatiamats (processes, threads) which can be
executed not only sequentially, but also simultaisgo(or concurrently). The main purpose
of such dividing is to be able for the system teaue other units of a program while one (or
some) of units of this program is idle (i. e., wagtfor some external event). This means that
the system is able to dynamically reallocate preaesme between threads when some thread
becomes idle. Such reallocation allows to decrélasdime needed for the program to exe-
cute, compared to equivalent non-concurrent progharaddition, on systems with more than
one processing unit in them (for example, in a rprbcessor system or in systems with a
multi-core processor), the presence of severahttgallows to execute more than one thread
at each time moment — this is also the opportutaitgecrease execution time of a program.
Therefore the main goal of using concurrent conmguis to reduce the execution time of a
program or, which is equivalent, to speed up themaations. (Downey 2008: 1-2)

One of the main aspects of concurrent computinlgasin order to accomplish a corporate
goal for a program, its threads should communigdth each other in a certain way. All
communications in a concurrent program are doneégns of inter-process (or inter-thread)
communication mechanisms. Process synchronizatione of most important types of inter-
process communication; its aim is to assure a paxherence of execution of actions be-
tween several threads (or processes).

As process synchronization mechanisms control #ezwion of threads, these mecha-
nisms, operated by their own logic, pause and resdifferent threads. Such intermediation

of synchronization mechanisms in the executiontbeoparts of a program obviously im-



pacts the execution speed. As there exist a nuofldifferent process synchronization algo-
rithms, and the same concurrent computational ¢askbe implemented in different ways by
using different synchronization algorithms, thelgsia of the impact of process synchroniza-
tion mechanisms on the execution speed of condupregrams is a fairly topical issue; it is
in the focus of this paper.

The goal of this paper is to suggest and analyzbdads how such impact of process syn-
chronization mechanisms (or, in other words, thdopmance of synchronization mecha-
nisms) on the execution speed for different sitieticould be measured and interpreted. By
applying these methods in practice, for examplejatild be possible to predict some issues
concerning the overall performance of a given comcu program when using different syn-
chronization algorithms; this, in its turn, canhelevelop guidelines for selecting more ap-
propriate process synchronization algorithms ircdjgeor more general situations.

1. Performance metrics

In order to measure the performance of processhsgnization algorithms, it is necessary
to introduce some requisite metrics, or measures®ie properties, of a concurrent program.

For ease of describing, let all metrics be dividet two classes: observational metrics
and analytical metrics. Observational metrics astrics which are obtained by direct meas-
urement of properties; and analytical metrics aetrics obtained by calculations over obser-
vational and/or other analytical metrics.

Let performance metrics also be divided into twassks, depending on their scope: thread-
level metrics and system-level metrics. Threadilewvetrics are specific to each thread of a
concurrent program, and are obtained consideriagcthiresponding thread outside the con-
text of other threads. On the contrary, systemtewtrics are specific to a program in gen-
eral.

Before discussing specific metrics, some geneslraptions which will allow formalizing
the results, should be formulated. They are tHeviohg:

— given a computer program, all metrics are affectely by some input parameters (de-

fined later in this paper) — that is, they are afd¢cted by some random factors;

— the problem is finite (and, therefore, completione of the program is also finite);

— all threads start their execution simultaneously.

Now let us consider thread-level metrics. In Figly¢here is schematically shown lifetime

of a thread. One can define two principal poss#itdees of a thread: performing effective ac-

tions (s, — all actions a thread performs in isolation) @ydchronizing with other threads

(s_..). These states usually alternate with each o#ivet;the alternation could occur an unlim-

syh



ited number of times. Thg_ state has its two substates: executing instrustimreded to

provide the synchronizatior(, ) and waiting for synchronization to completg, (

i '.'ait)'

event

— —
thread lifetime
synchronizing

Figure l. Thread lifetime

Let us assign to each staig the total timet_ the thread is in this state. Analyzing the
thread-level metrics, it is clear that for eachetltt effective timet_ is constant; however,

t andt are both variable, and for better performance #teuld be minimized. It

SWILIEN SWHIW L
is also important to say that the timg, . is dependent only on the synchronization mecha-

nisms (including their implementation) used in theead; howevet is dependent both

EWILIWEIT

on the synchronization mechanisnegc{uding their implementation) used in the thread, and
as well as the behaviour of other threads — wisdiai less predictable.
Considering system-level observational metricsrettmuld be defined overall execution

time (7,) — a time interval between the beginning and the: & execution of the entire con-

current program. Other system-level metrics coa@dléfined as follows:

— total effective timeT.z) — the sum of effective timet ;) for all threads;

— total waiting time ' ) for all threads; etc.

5}'n:1.'.'ait)

— the sum of waiting timex,

niwait

When measuring overall performance of synchroremathechanisms in a concurrent pro-
gram, the following analytical system-level metrare fairly significant:

. T, . .
— effectiveness rates TE: shows how effectively was executed actual wdrle; mumber

H

of processing units (or cores in a processing usit) the best values of this measure

converge toi, however, this is possible only when threads atndasnot depend on

each other;



I_EJ.'T.:EC

— synchronization execution rate : shows the rate of operating costs for execut-

eff Tisym
ing instructions in synchronization algorithms; éakvalues in interveflo; 1) (O is the

best, 1 is the worst); this metric depends onlysgnchronization algorithms used in
separate threads and their implementation;

— synchronization waiting rate ———=: numerical interpretation is similar to the previ-

eff Tigm

ous metric; however, unlike the previous, this methows a holistic result which de-
pends not only on summation of independent residllseparate threads, but also on a
way that different threads interact with each ather

2. Factorsthat metrics can depend on

When working with metrics, it is important to knowarly all factors (inputs) that metrics
can depend on. In this section, the authors ofpgher tried to identify such factors.

Firstly, factors on which can depend performancéricseeshould be split into two parts:
program-dependent and environment-dependent. Ttex kaetrics usually imply some sig-
nificant properties of program execution environmm@sually hardware), including:

— a number of processing units (or number of corespnocessing unit),

— type and architecture of a processing unit,

— performance of a processing unit; etc.

Program-dependent factors mostly depend on a steu@nd synchronization logic of
threads and include the following:

— number of threads,

— structure of each thread: how much effective wotkraad should do before each act

of synchronization,

— pattern of thread interaction,

— pattern of waiting for external events,

— synchronization mechanisms used in each synchtoiziame; etc.

3. General consider ations about approaches to measurement

When there are defined basic performance meastieaess synchronization algorithms
and main factors which influence the results oktheeasures, it is needed to define a way
how the measurements could be done. Potentialhe thee two different approaches to such
measurements: observation of real systems andaiioul(see (Hartmann 2005: 5-7)).

The first approach consists of taking a real compprogram (or writing a “synthetic”

program with needed properties), adding to its cemlme time measurement routines which



will measure the time intervais;, t t andT_, and running the program (possibly,

syniex’ “syniwait

multiple times to obtain higher measurement prenisi This approach has the following
characteristics:

— measurements can be done relatively easy (by ingert a program a relatively sim-
ple measurement code);

— the precision of measurements will suffer due ® iteasurement code will interfere
with the parts of base program;

— time needed to obtain results could be reasonairhel due to real-time execution;
moreover, many execution times would be necesgahere is a need to obtain the
measurements for different input parameters;

— there will be rather hard to generalize the obthiresults due to a large number of in-
fluencing factors.

The second approach consists of modelling a coaeuystem taking as inputs some
most important general properties (factors) thatld¢aescribe the system (however, some
amount of work should be done to select from aoligiroperties those which are most appro-
priate), and simulating its execution, where measent results are fixed by the simulating
environment. This approach could be characterizeitid following facts:

— to apply this approach, there is needed for a gtrnathematical model of a structure

and operational logic of thread synchronizatiorefgrably, such model could be based
on Petri nets; see (Winskel, Nielsen 1993:80));

— the results will be obtained mush faster due tomah-time execution of the model;

— it would be easier to see the correlation betweenti information and measures, and
for the analysis of the results, mathematical m#ghoould be used (results would be
more statistic-oriented) — this is mostly due te thinimization of influencing factors.

Conclusions

The gain of applying concurrent computing is a fmesspeedup of the overall perform-
ance of a program. However, this gain depends nigt@n the environment of the program,
but also on the program itself, including its sepian into threads, and types and patterns of
their interaction (and considerably synchronizgtidrhere exist several uncomplicated met-
rics which can be used to get quantitative valdgbeimpact of synchronization mechanisms
on the execution speed. However, it could be areitise way how to obtain the measurement
results. As two main alternatives, either real @ysbbservation or simulation can be used.
The former method is easier, but taking more time much harder in context of generalizing

the results; the latter method is more complicabed faster and easier for generalization.



Possible directions for further work are the folioge Firstly, it is rather necessary to
maximally simplify the input data set (i. e., factdéhat metrics can depend on) in order to eas-
ier understand the dependencies between thesedafautind the measures. Secondly, it will
be useful to formalize the description of such ingata set and to define requirements for
software which can simulate a specific interacbbthreads and measure needed metrics.

The further work may also include:

— Iimplementing test software that can model the eti@cwf concurrent programs given

a specific input data set, and give the measureresuits;
— analyzing the performance of widely-used procesglspnization algorithms in dif-
ferent use-cases.
Acknowledgements
This work has been supported by the European Seorad within the project “Support for

the implementation of doctoral studies at Riga hecdl University”.

Bibliography
1. Downey A. B. (2008)The Little Book of Semaphores. 2" ed.
http://greenteapress.com/semaphores/downey08seneapbuf
2. Hartmann S. (2005)he World as a Process. Smulations in the Natural and Social
Sciences. http://philsci-archive.pitt.edu/2412/1/Simulatiopdt
3. Winskel G., Nielsen M. (1993Y1odels for Concurrency.
http://www.daimi.au.dk/PB/463/PB-463.pdf




